Virtual Knots

Autor: Vasiliĭ Olegovich Manturov
Publisher: World Scientific
ISBN: 9814401129
File Size: 53,27 MB
Format: PDF, ePub
Read: 6377
Download or Read Book
The book is the first systematic research completely devoted to a comprehensive study of virtual knots and classical knots as its integral part. The book is self-contained and contains up-to-date exposition of the key aspects of virtual (and classical) knot theory. Virtual knots were discovered by Louis Kauffman in 1996. When virtual knot theory arose, it became clear that classical knot theory was a small integral part of a larger theory, and studying properties of virtual knots helped one understand better some aspects of classical knot theory and encouraged the study of further problems. Virtual knot theory finds its applications in classical knot theory. Virtual knot theory occupies an intermediate position between the theory of knots in arbitrary three-manifold and classical knot theory. In this book we present the latest achievements in virtual knot theory including Khovanov homology theory and parity theory due to V O Manturov and graph-link theory due to both authors. By means of parity, one can construct functorial mappings from knots to knots, filtrations on the space of knots, refine many invariants and prove minimality of many series of knot diagrams. Graph-links can be treated as "diagramless knot theory": such "links" have crossings, but they do not have arcs connecting these crossings. It turns out, however, that to graph-links one can extend many methods of classical and virtual knot theories, in particular, the Khovanov homology and the parity theory.

Algebraic Modeling Of Topological And Computational Structures And Applications

Autor: Sofia Lambropoulou
Publisher: Springer
ISBN: 3319681036
File Size: 58,16 MB
Format: PDF
Read: 6524
Download or Read Book
This interdisciplinary book covers a wide range of subjects, from pure mathematics (knots, braids, homotopy theory, number theory) to more applied mathematics (cryptography, algebraic specification of algorithms, dynamical systems) and concrete applications (modeling of polymers and ionic liquids, video, music and medical imaging). The main mathematical focus throughout the book is on algebraic modeling with particular emphasis on braid groups. The research methods include algebraic modeling using topological structures, such as knots, 3-manifolds, classical homotopy groups, and braid groups. The applications address the simulation of polymer chains and ionic liquids, as well as the modeling of natural phenomena via topological surgery. The treatment of computational structures, including finite fields and cryptography, focuses on the development of novel techniques. These techniques can be applied to the design of algebraic specifications for systems modeling and verification. This book is the outcome of a workshop in connection with the research project Thales on Algebraic Modeling of Topological and Computational Structures and Applications, held at the National Technical University of Athens, Greece in July 2015. The reader will benefit from the innovative approaches to tackling difficult questions in topology, applications and interrelated research areas, which largely employ algebraic tools.

New Ideas In Low Dimensional Topology

Autor: Manturov Vassily Olegovich
Publisher: World Scientific
ISBN: 9814630632
File Size: 80,55 MB
Format: PDF, Kindle
Read: 7574
Download or Read Book
This book consists of a selection of articles devoted to new ideas and developments in low dimensional topology. Low dimensions refer to dimensions three and four for the topology of manifolds and their submanifolds. Thus we have papers related to both manifolds and to knotted submanifolds of dimension one in three (classical knot theory) and two in four (surfaces in four dimensional spaces). Some of the work involves virtual knot theory where the knots are abstractions of classical knots but can be represented by knots embedded in surfaces. This leads both to new interactions with classical topology and to new interactions with essential combinatorics.

Combinatorial Physics

Autor: T Bastin
Publisher: World Scientific
ISBN: 9814500623
File Size: 31,75 MB
Format: PDF, Mobi
Read: 5189
Download or Read Book
The authors aim to reinstate a spirit of philosophical enquiry in physics. They abandon the intuitive continuum concepts and build up constructively a combinatorial mathematics of process. This radical change alone makes it possible to calculate the coupling constants of the fundamental fields which — via high energy scattering — are the bridge from the combinatorial world into dynamics. The untenable distinction between what is ‘observed’, or measured, and what is not, upon which current quantum theory is based, is not needed. If we are to speak of mind, this has to be present — albeit in primitive form — at the most basic level, and not to be dragged in at one arbitrary point to avoid the difficulties about quantum observation. There is a growing literature on information-theoretic models for physics, but hitherto the two disciplines have gone in parallel. In this book they interact vitally. Contents: Introduction and Summary of ChaptersSpaceComplementarity and All ThatThe Simple Case for a Combinatorial PhysicsA Hierarchical Model — Some Introductory ArgumentsA Hierarchical Combinatorial Model — Full TreatmentScattering and Coupling ConstantsQuantum Numbers and the ParticleToward the ContinuumObjectivity and Subjectivity — Some ‘ISMS’ Readership: Graduates, mathematical physicists, high energy physicists, philosophers of science and information theorists. keywords:Quantum Physics;Fine Structure Constant;Dimensionless Constants;Process;Discrete Physics;Combinatorics;Eddington;Hierarchies

An Invitation To Knot Theory

Autor: Heather A. Dye
Publisher: CRC Press
ISBN: 1498798616
File Size: 65,72 MB
Format: PDF, ePub, Mobi
Read: 5948
Download or Read Book
The Only Undergraduate Textbook to Teach Both Classical and Virtual Knot Theory An Invitation to Knot Theory: Virtual and Classical gives advanced undergraduate students a gentle introduction to the field of virtual knot theory and mathematical research. It provides the foundation for students to research knot theory and read journal articles on their own. Each chapter includes numerous examples, problems, projects, and suggested readings from research papers. The proofs are written as simply as possible using combinatorial approaches, equivalence classes, and linear algebra. The text begins with an introduction to virtual knots and counted invariants. It then covers the normalized f-polynomial (Jones polynomial) and other skein invariants before discussing algebraic invariants, such as the quandle and biquandle. The book concludes with two applications of virtual knots: textiles and quantum computation.

History And Science Of Knots

Autor: J C Turner
Publisher: World Scientific
ISBN: 9814499641
File Size: 18,46 MB
Format: PDF, ePub
Read: 9157
Download or Read Book
This book brings together twenty essays on diverse topics in the history and science of knots. It is divided into five parts, which deal respectively with knots in prehistory and antiquity, non-European traditions, working knots, the developing science of knots, and decorative and other aspects of knots. Its authors include archaeologists who write on knots found in digs of ancient sites (one describes the knots used by the recently discovered Ice Man); practical knotters who have studied the history and uses of knots at sea, for fishing and for various life support activities; a historian of lace; a computer scientist writing on computer classification of doilies; and mathematicians who describe the history of knot theories from the eighteenth century to the present day. In view of the explosion of mathematical theories of knots in the past decade, with consequential new and important scientific applications, this book is timely in setting down a brief, fragmentary history of mankind's oldest and most useful technical and decorative device — the knot. Contents:Prehistory and Antiquity:Pleistocene KnottingWhy Knot? — Some Speculations on the First KnotsOn Knots and Swamps — Knots in European PrehistoryAncient Egyptian Rope and KnotsNon-European Traditions:The Peruvian QuipuThe Art of Chinese Knots Works: A Short HistoryInuit KnotsWorking Knots:Knots at SeaA History of Life Support KnotsTowards a Science of Knots?:Studies on the Behaviour of KnotsA History of Topological Knot Theory of KnotsTramblesCrochet Work — History and Computer ApplicationsDecorative Knots and Other Aspects:The History of MacraméA History of LaceHeraldic KnotsOn the True Love Knotand other papers Readership: Mathematicians, archeologists, social historians and general readers. keywords:Antiquit;Braiding;Climbing;Heraldry;History;Knots;Lace;Mariners;Prehistory;Quipus;Science;Theory;Topology;Knotting, Pleistocene;Egyptian;Inuit;Chinese;Mountaineering, Topological Knot Theory;Knot Theories;Quipo Knot Mathematics;Knot Strength Efficiency;Heraldic;True Love;Crochet;Computer Aided Design;Trambles “… it is a veritable compendium of information about every aspects of knots, from their links with quantum theory to attempts to measure their strength when tying climbing ropes together … the huge scope of this book makes it one I have turned to many times, for many different purposes.” New Scientists “I enjoyed browsing through all the chapters. They contain material that a mathematician would not normally come across in his work.” The Mathematical Intelligencer

Knot Theory

Autor: Vassily Manturov
Publisher: CRC Press
ISBN: 9780203402849
File Size: 27,38 MB
Format: PDF, ePub
Read: 863
Download or Read Book
Since discovery of the Jones polynomial, knot theory has enjoyed a virtual explosion of important results and now plays a significant role in modern mathematics. In a unique presentation with contents not found in any other monograph, Knot Theory describes, with full proofs, the main concepts and the latest investigations in the field. The book is divided into six thematic sections. The first part discusses "pre-Vassiliev" knot theory, from knot arithmetics through the Jones polynomial and the famous Kauffman-Murasugi theorem. The second part explores braid theory, including braids in different spaces and simple word recognition algorithms. A section devoted to the Vassiliev knot invariants follows, wherein the author proves that Vassiliev invariants are stronger than all polynomial invariants and introduces Bar-Natan's theory on Lie algebra respresentations and knots. The fourth part describes a new way, proposed by the author, to encode knots by d-diagrams. This method allows the encoding of topological objects by words in a finite alphabet. Part Five delves into virtual knot theory and virtualizations of knot and link invariants. This section includes the author's own important results regarding new invariants of virtual knots. The book concludes with an introduction to knots in 3-manifolds and Legendrian knots and links, including Chekanov's differential graded algebra (DGA) construction. Knot Theory is notable not only for its expert presentation of knot theory's state of the art but also for its accessibility. It is valuable as a professional reference and will serve equally well as a text for a course on knot theory.

Introduction To Knot Theory

Autor: R. H. Crowell
Publisher: Springer Science & Business Media
ISBN: 1461299357
File Size: 20,85 MB
Format: PDF, ePub, Mobi
Read: 336
Download or Read Book
Knot theory is a kind of geometry, and one whose appeal is very direct because the objects studied are perceivable and tangible in everyday physical space. It is a meeting ground of such diverse branches of mathematics as group theory, matrix theory, number theory, algebraic geometry, and differential geometry, to name some of the more prominent ones. It had its origins in the mathematical theory of electricity and in primitive atomic physics, and there are hints today of new applications in certain branches of chemistryJ The outlines of the modern topological theory were worked out by Dehn, Alexander, Reidemeister, and Seifert almost thirty years ago. As a subfield of topology, knot theory forms the core of a wide range of problems dealing with the position of one manifold imbedded within another. This book, which is an elaboration of a series of lectures given by Fox at Haverford College while a Philips Visitor there in the spring of 1956, is an attempt to make the subject accessible to everyone. Primarily it is a text book for a course at the junior-senior level, but we believe that it can be used with profit also by graduate students. Because the algebra required is not the familiar commutative algebra, a disproportionate amount of the book is given over to necessary algebraic preliminaries.

Diamond A Paradox Logic

Autor: Nathaniel Hellerstein
Publisher: World Scientific
ISBN: 9810228503
File Size: 49,53 MB
Format: PDF, ePub, Mobi
Read: 1949
Download or Read Book
"This book should be interesting for everyone, and especially for logicians".Mathematical Reviews, 1999