Spacetime And Singularities

Autor: Gregory L. Naber
Publisher: Cambridge University Press
ISBN: 9780521336123
File Size: 69,76 MB
Format: PDF, ePub
Read: 481
Download or Read Book
Naber provides an elementary introduction to the geometrical methods and notions used in special and general relativity. Particular emphasis is placed on the ideas concerned with the structure of space-time and that play a role in the Penrose-Hawking singularity theorems. The author's primary purpose is to give a rigorous proof of the simplest of these theorems, by the one that is representative of the whole. He provides exercises and examples at the end of each chapter. No previous exposure either to relativity theory of differential geometry is required of the reader, as necessary concepts are developed when needed, though some restrictions ae imposed on the types of space considered.

An Introduction To General Relativity

Autor: L. P. Hughston
Publisher: Cambridge University Press
ISBN: 9780521339438
File Size: 41,36 MB
Format: PDF, ePub
Read: 3319
Download or Read Book
This textbook provides an introduction to general relativity for mathematics undergraduates or graduate physicists. After a review of Cartesian tensor notation and special relativity the concepts of Riemannian differential geometry are introducted. More emphasis is placed on an intuitive grasp of the subject and a calculational facility than on a rigorous mathematical exposition. General relativity is then presented as a relativistic theory of gravity reducing in the appropriate limits to Newtonian gravity or special relativity. The Schwarzchild solution is derived and the gravitational red-shift, time dilation and classic tests of general relativity are discussed. There is a brief account of gravitational collapse and black holes based on the extended Schwarzchild solution. Other vacuum solutions are described, motivated by their counterparts in linearised general relativity. The book ends with chapters on cosmological solutions to the field equations. There are exercises attached to each chapter, some of which extend the development given in the text.

Lmsst 24 Lectures On Elliptic Curves

Autor: John William Scott Cassels
Publisher: Cambridge University Press
ISBN: 9780521425308
File Size: 51,39 MB
Format: PDF
Read: 2309
Download or Read Book
The study of special cases of elliptic curves goes back to Diophantos and Fermat, and today it is still one of the liveliest centers of research in number theory. This book, addressed to beginning graduate students, introduces basic theory from a contemporary viewpoint but with an eye to the historical background. The central portion deals with curves over the rationals: the Mordell-Wei finite basis theorem, points of finite order (Nagell-Lutz), etc. The treatment is structured by the local-global standpoint and culminates in the description of the Tate-Shafarevich group as the obstruction to a Hasse principle. In an introductory section the Hasse principle for conics is discussed. The book closes with sections on the theory over finite fields (the "Riemann hypothesis for function fields") and recently developed uses of elliptic curves for factoring large integers. Prerequisites are kept to a minimum; an acquaintance with the fundamentals of Galois theory is assumed, but no knowledge either of algebraic number theory or algebraic geometry is needed. The p-adic numbers are introduced from scratch. Many examples and exercises are included for the reader, and those new to elliptic curves, whether they are graduate students or specialists from other fields, will find this a valuable introduction.

Aspects Of Quantum Field Theory In Curved Spacetime

Autor: Stephen A. Fulling
Publisher: Cambridge University Press
ISBN: 9780521377683
File Size: 74,91 MB
Format: PDF, Docs
Read: 6806
Download or Read Book
The theory of quantum fields on curved spacetimes has attracted great attention since the discovery, by Stephen Hawking, of black-hole evaporation. It remains an important subject for the understanding of such contemporary topics as inflationary cosmology, quantum gravity and superstring theory. This book provides, for mathematicians, an introduction to this field of physics in a language and from a viewpoint which such a reader should find congenial. Physicists should also gain from reading this book a sound grasp of various aspects of the theory, some of which have not been particularly emphasised in the existing review literature. The topics covered include normal-mode expansions for a general elliptic operator, Fock space, the Casimir effect, the 'Klein' paradox, particle definition and particle creation in expanding universes, asymptotic expansion of Green's functions and heat kernels, and renormalisation of the stress tensor. The style is pedagogic rather than formal; some knowledge of general relativity and differential geometry is assumed, but the author does supply background material on functional analysis and quantum field theory as required. The book arose from a course taught to graduate students and could be used for self-study or for advanced courses in relativity and quantum field theory.

A Mathematical Introduction To Wavelets

Autor: P. Wojtaszczyk
Publisher: Cambridge University Press
ISBN: 9780521578943
File Size: 55,46 MB
Format: PDF, ePub, Docs
Read: 5397
Download or Read Book
This book presents a mathematical introduction to the theory of orthogonal wavelets and their uses in analyzing functions and function spaces, both in one and in several variables. Starting with a detailed and self-contained discussion of the general construction of one dimensional wavelets from multiresolution analysis, the book presents in detail the most important wavelets: spline wavelets, Meyer's wavelets and wavelets with compact support. It then moves to the corresponding multivariable theory and gives genuine multivariable examples. The author discusses wavelet decompositions in Lp spaces, Hardy spaces and Besov spaces and provides wavelet characterizations of those spaces. Also included are periodic wavelets or wavelets not associated with a multiresolution analysis. This will be an invaluable book for those wishing to learn about the mathematical foundations of wavelets.

Hyperbolic Geometry

Autor: Birger Iversen
Publisher: Cambridge University Press
ISBN: 0521435080
File Size: 79,44 MB
Format: PDF, Mobi
Read: 3225
Download or Read Book
Although it arose from purely theoretical considerations of the underlying axioms of geometry, the work of Einstein and Dirac has demonstrated that hyperbolic geometry is a fundamental aspect of modern physics. In this book, the rich geometry of the hyperbolic plane is studied in detail, leading to the focal point of the book, Poincare's polygon theorem and the relationship between hyperbolic geometries and discrete groups of isometries. Hyperbolic 3-space is also discussed, and the directions that current research in this field is taking are sketched. This will be an excellent introduction to hyperbolic geometry for students new to the subject, and for experts in other fields.

Set Theory

Autor: A. Hajnal
Publisher:
ISBN: 9781107362550
File Size: 56,86 MB
Format: PDF
Read: 4014
Download or Read Book
This is a classic introduction to set theory, from the basics through to the modern tools of combinatorial set theory.