Multilevel Modeling

Autor: Steven P. Reise
Publisher: Psychology Press
ISBN: 1135655367
File Size: 56,21 MB
Format: PDF, Docs
Read: 2886
Download or Read Book
This book illustrates the current work of leading multilevel modeling (MLM) researchers from around the world. The book's goal is to critically examine the real problems that occur when trying to use MLMs in applied research, such as power, experimental design, and model violations. This presentation of cutting-edge work and statistical innovations in multilevel modeling includes topics such as growth modeling, repeated measures analysis, nonlinear modeling, outlier detection, and meta analysis. This volume will be beneficial for researchers with advanced statistical training and extensive experience in applying multilevel models, especially in the areas of education; clinical intervention; social, developmental and health psychology, and other behavioral sciences; or as a supplement for an introductory graduate-level course.

Handbook Of Ethics In Quantitative Methodology

Autor: Sonya K. Sterba
Publisher: Taylor & Francis
ISBN: 113688873X
File Size: 73,96 MB
Format: PDF, Mobi
Read: 7402
Download or Read Book
"Part 1 presents ethical frameworks that cross-cut design, analysis, and modeling in the behavioral sciences. Part 2 focuses on ideas for disseminating ethical training in statistics courses. Part 3 considers the ethical aspects of selecting measurement instruments and sample size planning and explores issues related to high stakes testing, the defensibility of experimental vs. quasi-experimental research designs, and ethics in program evaluation. Decision points that shape a researchers' approach to data analysis are examined in Part 4 - when and why analysts need to account for how the sample was selected, how to evaluate tradeoffs of hypothesis-testing vs. estimation, and how to handle missing data. Ethical issues that arise when using techniques such as factor analysis or multilevel modeling and when making causal inferences are also explored. The book concludes with ethical aspects of reporting meta-analyses, of cross-disciplinary statistical reform, and of the publication process.

Longitudinal Structural Equation Modeling

Autor: Jason T. Newsom
Publisher: Routledge
ISBN: 1317975359
File Size: 38,48 MB
Format: PDF
Read: 8026
Download or Read Book
This comprehensive resource reviews structural equation modeling (SEM) strategies for longitudinal data to help readers see which modeling options are available for which hypotheses. The author demonstrates how SEM is related to other longitudinal data techniques throughout. By exploring connections between models, readers gain a better understanding of when to choose one analysis over another. The book explores basic models to sophisticated ones including the statistical and conceptual underpinnings that are the building blocks of the analyses. Accessibly written, research examples from the behavioral and social sciences and results interpretations are provided throughout. The emphasis is on concepts and practical guidance for applied research rather than on mathematical proofs. New terms are highlighted and defined in the glossary. Figures are included for every model along with detailed discussions of model specification and implementation issues. Each chapter also includes examples of each model type, comment sections that provide practical guidance, model extensions, and recommended readings. Highlights include: Covers the major SEM approaches to longitudinal analysis in one resource. Explores connections between longitudinal SEM models to enhance integration. Numerous examples that help readers match research questions to appropriate analyses and interpret results. Reviews practical issues related to model specification and estimation to reinforce connections. Analyzes continuous and discrete (binary and ordinal) variables throughout for breadth not found in other sources. Reviews key SEM concepts for those who need a refresher (Ch. 1). Emphasizes how to apply and interpret each model through realistic data examples. Provides the book’s data sets at www.longitudinalsem.com along with the Mplus and R-lavaan syntax used to generate the results. Introduces the LISREL notation system used throughout (Appendix A). The chapters can be read out of order but it is best to read chapters 1 – 4 first because most of the later chapters refer back to them. The book opens with a review of latent variables and analysis of binary and ordinal variables. Chapter 2 applies this information to assessing longitudinal measurement invariance. SEM tests of dependent means and proportions over time points are explored in Chapter 3, and stability and change, difference scores, and lagged regression are covered in Chapter 4. The remaining chapters are each devoted to one major type of longitudinal SEM -- repeated measures analysis models, full cross-lagged panel models and simplex models, modeling stability with state-trait models, linear and nonlinear growth curve models, latent difference score models, latent transition analysis, time series analysis, survival analysis, and attrition. Missing data is discussed in the context of many of the preceding models in Chapter 13. Ideal for graduate courses on longitudinal (data) analysis, advanced SEM, longitudinal SEM, and/or advanced data (quantitative) analysis taught in the behavioral, social, and health sciences, this text also appeals to researchers in these fields. Intended for those without an extensive math background, prerequisites include familiarity with basic SEM. Matrix algebra is avoided in all but a few places.

The Essence Of Multivariate Thinking

Autor: Lisa L. Harlow
Publisher: Routledge
ISBN: 1317859790
File Size: 11,84 MB
Format: PDF, Docs
Read: 7332
Download or Read Book
By focusing on underlying themes, this book helps readers better understand the connections between multivariate methods. For each method the author highlights: the similarities and differences between the methods, when they are used and the questions they address, the key assumptions and equations, and how to interpret the results. The concepts take center stage while formulas are kept to a minimum. Examples using the same data set give readers continuity so they can more easily apply the concepts. Each method is also accompanied by a worked out example, SPSS and SAS input, and an example of how to write up the results. EQS code is used for the book’s SEM applications. This extensively revised edition features: New SEM chapters including an introduction (ch.10), path analysis (ch.11), confirmatory factor analysis (ch.12), and latent variable modeling (ch.13) the last three with an EQS application. A new chapter on multilevel modeling (ch. 8) that is now used more frequently in the social sciences. More emphasis on significance tests, effect sizes, and confidence intervals to encourage readers to adopt a thorough approach to assessing the magnitude of their findings. A new data set that explores the work environment. More discussion about the basic assumptions and equations for each method for a more accessible approach. New examples that help clarify the distinctions between methods. A new website at https://sites.google.com/site/multivariatesecondedition/ that features the datasets for all of the examples in the book for use in both SPSS and SAS and in EQS for the SEM chapters. The first two chapters review the core themes that run through most multivariate methods. The author shows how understanding multivariate methods is much more achievable when we notice the themes that underlie these statistical techniques. This multiple level approach also provides greater reliability and validity in our research. After providing insight into the core themes, the author illustrates them as they apply to the most popular multivariate methods used in the social, and behavioral sciences. First, two intermediate methods are explored – multiple regression and analysis of covariance. Next the multivariate grouping variable methods of multivariate analysis of variance, discriminant function analysis, and logistic regression are explored. Next the themes are applied to multivariate modeling methods including multilevel modeling, path analysis, confirmatory factor analysis, and latent variable models that include exploratory structural methods of principal component and factor analysis. The book concludes with a summary of the common themes and how they pertain to each method discussed in this book. Intended for advanced undergraduate and/or graduate courses in multivariate statistics taught in psychology, education, human development, business, nursing, and other social and life sciences, researchers also appreciate this book‘s applied approach. Knowledge of basic statistics, research methods, basic algebra, and finite mathematics is recommended.

Advances In Multilevel Modeling For Educational Research

Autor: Jeffrey R. Harring
Publisher: IAP
ISBN: 1681233290
File Size: 56,86 MB
Format: PDF, Docs
Read: 8022
Download or Read Book
The significance that practitioners are placing on the use of multilevel models is undeniable as researchers want to both accurately partition variance stemming from complex sampling designs and understand relations within and between variables describing the hierarchical levels of these nested data structures. Simply scan the applied literature and one can see evidence of this trend by noticing the number of articles adopting multilevel models as their primary modeling framework. Helping to drive the popularity of their use, governmental funding agencies continue to advocate the use of multilevel models as part of a comprehensive analytic strategy for conducting rigorous and relevant research to improve our nation’s education system. Advances in Multilevel Modeling for Educational Research: Addressing Practical Issues Found in Real?World Applications is a resource intended for advanced graduate students, faculty and/or researchers interested in multilevel data analysis, especially in education, social and behavioral sciences. The chapters are written by prominent methodological researchers across diverse research domains such as educational statistics, quantitative psychology, and psychometrics. Each chapter exposes the reader to some of the latest methodological innovations, refinements and state?of?the?art developments and perspectives in the analysis of multilevel data including current best practices of standard techniques. We believe this volume will be particularly appealing to researchers in domains including but not limited to: educational policy and administration, educational psychology including school psychology and special education, and clinical psychology. In fact, we believe this volume will be a desirable resource for any research area that uses hierarchically nested data. The book will likely be attractive to applied and methodological researchers in several professional organizations such as the American Educational Research Association (AERA), the American Psychological Association (APA), the American Psychological Society (APS), the Society for Research on Educational Effectiveness (SREE), and other related organizations.

Multilevel Analysis

Autor: Tom A B Snijders
Publisher: SAGE
ISBN: 144625433X
File Size: 69,25 MB
Format: PDF, ePub, Docs
Read: 6219
Download or Read Book
The Second Edition of this classic text introduces the main methods, techniques and issues involved in carrying out multilevel modeling and analysis. Snijders and Bosker's book is an applied, authoritative and accessible introduction to the topic, providing readers with a clear conceptual and practical understanding of all the main issues involved in designing multilevel studies and conducting multilevel analysis. This book provides step-by-step coverage of: • multilevel theories • ecological fallacies • the hierarchical linear model • testing and model specification • heteroscedasticity • study designs • longitudinal data • multivariate multilevel models • discrete dependent variables There are also new chapters on: • missing data • multilevel modeling and survey weights • Bayesian and MCMC estimation and latent-class models. This book has been comprehensively revised and updated since the last edition, and now discusses modeling using HLM, MLwiN, SAS, Stata including GLLAMM, R, SPSS, Mplus, WinBugs, Latent Gold, and SuperMix. This is a must-have text for any student, teacher or researcher with an interest in conducting or understanding multilevel analysis. Tom A.B. Snijders is Professor of Statistics in the Social Sciences at the University of Oxford and Professor of Statistics and Methodology at the University of Groningen. Roel J. Bosker is Professor of Education and Director of GION, Groningen Institute for Educational Research, at the University of Groningen.

Applied Data Analytic Techniques For Turning Points Research

Autor: Patricia Cohen
Publisher: Routledge/Psychpress
ISBN:
File Size: 29,19 MB
Format: PDF, ePub, Docs
Read: 4969
Download or Read Book
This innovative volume demonstrates the use of a range of statistical approaches that examine "turning points" (a change in direction, magnitude, or meaning) in real data. Analytic techniques are illustrated with real longitudinal data from a variety of fields. As such the book will appeal to a variety of researchers including:· Developmental researchers interested in identifying factors precipitating turning points at various life stages.· Medical or substance abuse researchers looking for turning points in disease or recovery.· Social researchers interested in estimating the effects of life experiences on subsequent behavioral changes.· Interpersonal behavior researchers looking to identify turning points in relationships.· Brain researchers needing to discriminate the onset of an experimentally produced process in a participant.The book opens with the goals and theoretical considerations in defining turning points. An overview of the methods presented in subsequent chapters is then provided. Chapter goals include discriminating "local" from long-term effects, identifying variables altering the connection between trajectories at different life stages, locating non-normative turning points, coping with practical distributional problems in trajectory analyses, and changes in the meaning and connections between variables in the transition to adulthood. From an applied perspective, the book explores such topics as antisocial/aggressive trajectories at different life stages, the impact of imprisonment on criminal behavior, family contact trajectories in the transition to adulthood, sustained effects of substance abuse, alternative models of bereavement, and identifying brain changes associated with the onset of a new brain process.Ideal for advanced students and researchers interested in identifying significant change in data in a variety of fields including psychology, medicine, education, political science, criminology, and sociology.

Multilevel Modeling

Autor: Douglas A. Luke
Publisher: SAGE
ISBN: 9780761928799
File Size: 80,70 MB
Format: PDF, ePub
Read: 4731
Download or Read Book
A practical introduction to multi-level modelling, this book offers an introduction to HLM & illustrations of how to use this technique to build models for hierarchical & longitudinal data.

Multivariate Applications In Substance Use Research

Autor: Jennifer S. Rose
Publisher: Psychology Press
ISBN: 1135678944
File Size: 11,98 MB
Format: PDF, Docs
Read: 1985
Download or Read Book
This edited volume introduces the latest advances in quantitative methods and illustrates ways to apply these methods to important questions in substance use research. The goal is to provide a forum for dialogue between methodologists developing innovative multivariate statistical methods and substance use researchers who have produced rich data sets. Reflecting current research trends, the book examines the use of longitudinal techniques to measure processes of change over time. Researchers faced with the task of studying the causes, course, treatment, and prevention of substance use and abuse will find this volume helpful for applying these techniques to make optimal use of their data. This innovative volume: introduces the use of latent curve methods for describing individual trajectories of adolescent substance use over time; explores methods for analyzing longitudinal data for individuals nested within groups, such as families, classrooms, and treatment groups; demonstrates how different patterns of missing data influence the interpretation of results; reports on some recent advances in longitudinal growth modeling; illustrates methods to assess mediation when there are multiple mediating pathways underlying an intervention effect; describes methods to identify moderating relations in structural equation models; demonstrates the use of structural equation models to evaluate a preventive intervention; applies epidemic modeling techniques to understand the spread of substance use in society; illustrates the use of latent transition analysis to model substance use as a series of stages; and applies logistic regression to prospectively predict smoking cessation.

Modeling Longitudinal And Multilevel Data

Autor: Todd D. Little
Publisher: Psychology Press
ISBN: 1135675945
File Size: 10,10 MB
Format: PDF, Docs
Read: 6687
Download or Read Book
This book focuses on the practical issues and approaches to handling longitudinal and multilevel data. All data sets and the corresponding command files are available via the Web. The working examples are available in the four major SEM packages--LISREL, EQS, MX, and AMOS--and two Multi-level packages--HLM and MLn. All equations and figural conventions are standardized across each contribution. The material is accessible to practicing researchers and students. Users can compare and contrast various analytic approaches to longitudinal and multiple-group data including SEM, Multi-level, LTA, and standard GLM techniques. Ideal for graduate students and practicing researchers in social and behavioral sciences.