Effect Sizes For Research

Autor: Robert J. Grissom
Publisher: Routledge
ISBN: 1135611467
File Size: 23,58 MB
Format: PDF, Kindle
Read: 6491
Download or Read Book
The goal of this book is to inform a broad readership about a variety of measures and estimators of effect sizes for research, their proper applications and interpretations, and their limitations. Its focus is on analyzing post-research results. The book provides an evenhanded account of controversial issues in the field, such as the role of significance testing. Consistent with the trend toward greater use of robust statistical methods, the book pays much attention to the statistical assumptions of the methods and to robust measures of effect size. Effect Sizes for Research discusses different effect sizes for a variety of kinds of variables, designs, circumstances, and purposes. It covers standardized differences between means, correlational measures, strength of association, and confidence intervals. The book clearly demonstrates how the choice of an appropriate measure might depend on such factors as whether variables are categorical, ordinal, or continuous; satisfying assumptions; the sampling method; and the source of variability in the population. It emphasizes a practical approach through: worked examples using real data; formulas and rationales for a variety of variables, designs, and purposes to help readers apply the material to their own data sets; software references for the more tedious calculations; and informative figures and tables, questions, and over 300 references. Intended as a resource for professionals, researchers, and advanced students in a variety of fields, this book is an excellent supplement for advanced courses in statistics in disciplines such as psychology, education, the social sciences, business, management, and medicine. A prerequisite of introductory statistics through factorial analysis of variance and chi-square is recommended.

The Essential Guide To Effect Sizes

Autor: Paul D. Ellis
Publisher: Cambridge University Press
ISBN: 0521142466
File Size: 80,92 MB
Format: PDF, ePub, Docs
Read: 3545
Download or Read Book
A jargon-free introduction for students and researchers looking to interpret the practical significance of their results.

Effect Sizes For Research

Autor: Robert J. Grissom
Publisher: Psychology Press
ISBN: 1410612910
File Size: 38,17 MB
Format: PDF
Read: 4003
Download or Read Book
The goal of this book is to inform a broad readership about a variety of measures and estimators of effect sizes for research, their proper applications and interpretations, and their limitations. Its focus is on analyzing post-research results. The book provides an evenhanded account of controversial issues in the field, such as the role of significance testing. Consistent with the trend toward greater use of robust statistical methods, the book pays much attention to the statistical assumptions of the methods and to robust measures of effect size. Effect Sizes for Research discusses different effect sizes for a variety of kinds of variables, designs, circumstances, and purposes. It covers standardized differences between means, correlational measures, strength of association, and confidence intervals. The book clearly demonstrates how the choice of an appropriate measure might depend on such factors as whether variables are categorical, ordinal, or continuous; satisfying assumptions; the sampling method; and the source of variability in the population. It emphasizes a practical approach through: worked examples using real data; formulas and rationales for a variety of variables, designs, and purposes to help readers apply the material to their own data sets; software references for the more tedious calculations; and informative figures and tables, questions, and over 300 references. Intended as a resource for professionals, researchers, and advanced students in a variety of fields, this book is an excellent supplement for advanced courses in statistics in disciplines such as psychology, education, the social sciences, business, management, and medicine. A prerequisite of introductory statistics through factorial analysis of variance and chi-square is recommended.

Confidence Intervals For Proportions And Related Measures Of Effect Size

Autor: Robert G. Newcombe
Publisher: CRC Press
ISBN: 1439812780
File Size: 59,78 MB
Format: PDF, Docs
Read: 5423
Download or Read Book
Confidence Intervals for Proportions and Related Measures of Effect Size illustrates the use of effect size measures and corresponding confidence intervals as more informative alternatives to the most basic and widely used significance tests. The book provides you with a deep understanding of what happens when these statistical methods are applied in situations far removed from the familiar Gaussian case. Drawing on his extensive work as a statistician and professor at Cardiff University School of Medicine, the author brings together methods for calculating confidence intervals for proportions and several other important measures, including differences, ratios, and nonparametric effect size measures generalizing Mann-Whitney and Wilcoxon tests. He also explains three important approaches to obtaining intervals for related measures. Many examples illustrate the application of the methods in the health and social sciences. Requiring little computational skills, the book offers user-friendly Excel spreadsheets for download at www.crcpress.com, enabling you to easily apply the methods to your own empirical data.

The Essence Of Multivariate Thinking

Autor: Lisa L. Harlow
Publisher: Routledge
ISBN: 1317859790
File Size: 69,86 MB
Format: PDF
Read: 343
Download or Read Book
By focusing on underlying themes, this book helps readers better understand the connections between multivariate methods. For each method the author highlights: the similarities and differences between the methods, when they are used and the questions they address, the key assumptions and equations, and how to interpret the results. The concepts take center stage while formulas are kept to a minimum. Examples using the same data set give readers continuity so they can more easily apply the concepts. Each method is also accompanied by a worked out example, SPSS and SAS input, and an example of how to write up the results. EQS code is used for the book’s SEM applications. This extensively revised edition features: New SEM chapters including an introduction (ch.10), path analysis (ch.11), confirmatory factor analysis (ch.12), and latent variable modeling (ch.13) the last three with an EQS application. A new chapter on multilevel modeling (ch. 8) that is now used more frequently in the social sciences. More emphasis on significance tests, effect sizes, and confidence intervals to encourage readers to adopt a thorough approach to assessing the magnitude of their findings. A new data set that explores the work environment. More discussion about the basic assumptions and equations for each method for a more accessible approach. New examples that help clarify the distinctions between methods. A new website at https://sites.google.com/site/multivariatesecondedition/ that features the datasets for all of the examples in the book for use in both SPSS and SAS and in EQS for the SEM chapters. The first two chapters review the core themes that run through most multivariate methods. The author shows how understanding multivariate methods is much more achievable when we notice the themes that underlie these statistical techniques. This multiple level approach also provides greater reliability and validity in our research. After providing insight into the core themes, the author illustrates them as they apply to the most popular multivariate methods used in the social, and behavioral sciences. First, two intermediate methods are explored – multiple regression and analysis of covariance. Next the multivariate grouping variable methods of multivariate analysis of variance, discriminant function analysis, and logistic regression are explored. Next the themes are applied to multivariate modeling methods including multilevel modeling, path analysis, confirmatory factor analysis, and latent variable models that include exploratory structural methods of principal component and factor analysis. The book concludes with a summary of the common themes and how they pertain to each method discussed in this book. Intended for advanced undergraduate and/or graduate courses in multivariate statistics taught in psychology, education, human development, business, nursing, and other social and life sciences, researchers also appreciate this book‘s applied approach. Knowledge of basic statistics, research methods, basic algebra, and finite mathematics is recommended.

Jmp For Basic Univariate And Multivariate Statistics

Autor: Ann Lehman
Publisher: SAS Institute
ISBN: 1612906036
File Size: 42,53 MB
Format: PDF, Mobi
Read: 5865
Download or Read Book
Learn how to manage JMP data and perform the statistical analyses most commonly used in research in the social sciences and other fields with JMP for Basic Univariate and Multivariate Statistics: Methods for Researchers and Social Scientists, Second Edition. Updated for JMP 10 and including new features on the statistical platforms, this book offers clearly written instructions to guide you through the basic concepts of research and data analysis, enabling you to easily perform statistical analyses and solve problems in real-world research. Step by step, you'll discover how to obtain descriptive and inferential statistics, summarize results clearly in a way that is suitable for publication, perform a wide range of JMP analyses, interpret the results, and more. Topics include screening data for errors selecting subsets computing the coefficient alpha reliability index (Cronbach's alpha) for a multiple-item scale performing bivariate analyses for all types of variables performing a one-way analysis of variance (ANOVA), multiple regression, and a one-way multivariate analysis of variance (MANOVA) Advanced topics include analyzing models with interactions and repeated measures. There is also comprehensive coverage of principle components with emphasis on graphical interpretation. This user-friendly book introduces researchers and students of the social sciences to JMP and to elementary statistical procedures, while the more advanced statistical procedures that are presented make it an invaluable reference guide for experienced researchers as well.

Understanding The New Statistics

Autor: Geoff Cumming
Publisher: Routledge
ISBN: 1136659188
File Size: 42,25 MB
Format: PDF, ePub, Docs
Read: 3012
Download or Read Book
This is the first book to introduce the new statistics - effect sizes, confidence intervals, and meta-analysis - in an accessible way. It is chock full of practical examples and tips on how to analyze and report research results using these techniques. The book is invaluable to readers interested in meeting the new APA Publication Manual guidelines by adopting the new statistics - which are more informative than null hypothesis significance testing, and becoming widely used in many disciplines. Accompanying the book is the Exploratory Software for Confidence Intervals (ESCI) package, free software that runs under Excel and is accessible at www.thenewstatistics.com. The book’s exercises use ESCI's simulations, which are highly visual and interactive, to engage users and encourage exploration. Working with the simulations strengthens understanding of key statistical ideas. There are also many examples, and detailed guidance to show readers how to analyze their own data using the new statistics, and practical strategies for interpreting the results. A particular strength of the book is its explanation of meta-analysis, using simple diagrams and examples. Understanding meta-analysis is increasingly important, even at undergraduate levels, because medicine, psychology and many other disciplines now use meta-analysis to assemble the evidence needed for evidence-based practice. The book’s pedagogical program, built on cognitive science principles, reinforces learning: Boxes provide "evidence-based" advice on the most effective statistical techniques. Numerous examples reinforce learning, and show that many disciplines are using the new statistics. Graphs are tied in with ESCI to make important concepts vividly clear and memorable. Opening overviews and end of chapter take-home messages summarize key points. Exercises encourage exploration, deep understanding, and practical applications. This highly accessible book is intended as the core text for any course that emphasizes the new statistics, or as a supplementary text for graduate and/or advanced undergraduate courses in statistics and research methods in departments of psychology, education, human development , nursing, and natural, social, and life sciences. Researchers and practitioners interested in understanding the new statistics, and future published research, will also appreciate this book. A basic familiarity with introductory statistics is assumed.

Univariate And Multivariate General Linear Models

Autor: Kevin Kim
Publisher: CRC Press
ISBN: 1420011367
File Size: 43,83 MB
Format: PDF
Read: 7219
Download or Read Book
Reviewing the theory of the general linear model (GLM) using a general framework, Univariate and Multivariate General Linear Models: Theory and Applications with SAS, Second Edition presents analyses of simple and complex models, both univariate and multivariate, that employ data sets from a variety of disciplines, such as the social and behavioral sciences. With revised examples that include options available using SAS 9.0, this expanded edition divides theory from applications within each chapter. Following an overview of the GLM, the book introduces unrestricted GLMs to analyze multiple regression and ANOVA designs as well as restricted GLMs to study ANCOVA designs and repeated measurement designs. Extensions of these concepts include GLMs with heteroscedastic errors that encompass weighted least squares regression and categorical data analysis, and multivariate GLMs that cover multivariate regression analysis, MANOVA, MANCOVA, and repeated measurement data analyses. The book also analyzes double multivariate linear, growth curve, seeming unrelated regression (SUR), restricted GMANOVA, and hierarchical linear models. New to the Second Edition Two chapters on finite intersection tests and power analysis that illustrates the experimental GLMPOWER procedure Expanded theory of unrestricted general linear, multivariate general linear, SUR, and restricted GMANOVA models to comprise recent developments Expanded material on missing data to include multiple imputation and the EM algorithm Applications of MI, MIANALYZE, TRANSREG, and CALIS procedures A practical introduction to GLMs, Univariate and Multivariate General Linear Models demonstrates how to fully grasp the generality of GLMs by discussing them within a general framework.

Applied Manova And Discriminant Analysis

Autor: Carl J. Huberty
Publisher: John Wiley & Sons
ISBN: 0471789461
File Size: 53,72 MB
Format: PDF, ePub, Docs
Read: 3200
Download or Read Book
A complete introduction to discriminant analysis--extensively revised, expanded, and updated This Second Edition of the classic book, Applied Discriminant Analysis, reflects and references current usage with its new title, Applied MANOVA and Discriminant Analysis. Thoroughly updated and revised, this book continues to be essential for any researcher or student needing to learn to speak, read, and write about discriminant analysis as well as develop a philosophy of empirical research and data analysis. Its thorough introduction to the application of discriminant analysis is unparalleled. Offering the most up-to-date computer applications, references, terms, and real-life research examples, the Second Edition also includes new discussions of MANOVA, descriptive discriminant analysis, and predictive discriminant analysis. Newer SAS macros are included, and graphical software with data sets and programs are provided on the book's related Web site. The book features: Detailed discussions of multivariate analysis of variance and covariance An increased number of chapter exercises along with selected answers Analyses of data obtained via a repeated measures design A new chapter on analyses related to predictive discriminant analysis Basic SPSS(r) and SAS(r) computer syntax and output integrated throughout the book Applied MANOVA and Discriminant Analysis enables the reader to become aware of various types of research questions using MANOVA and discriminant analysis; to learn the meaning of this field's concepts and terms; and to be able to design a study that uses discriminant analysis through topics such as one-factor MANOVA/DDA, assessing and describing MANOVA effects, and deleting and ordering variables.