Dynamics Of Heterogeneous Materials

Autor: Vitali Nesterenko
Publisher: Springer Science & Business Media
ISBN: 1475735243
File Size: 80,29 MB
Format: PDF, Docs
Read: 6482
Download or Read Book
This monograph deals with the behavior of essentially nonlinear heterogeneous materials in processes occurring under intense dynamic loading, where microstructural effects play the main role. This book is not an introduction to the dynamic behavior of materials, and general information available in other books is not included. The material herein is presented in a form I hope will make it useful not only for researchers working in related areas, but also for graduate students. I used it successfully to teach a course on the dynamic behavior of materials at the University of California, San Diego. Another course well suited to the topic may be nonlinear wave dynamics in solids, especially the part on strongly nonlinear waves. About 100 problems presented in the book at the end of each chapter will help the reader to develop a deeper understanding of the subject. I tried to follow a few rules in writing this book: (1) To focus on strongly nonlinear phenomena where there is no small parameter with respect to the amplitude of disturbance, including solitons, shock waves, and localized shear. (2) To take into account phenomena sensitive to materials structure, where typical space scale of material parameters (particle size, cell size) are presented in the models or are variable in experimental research.

Static Compression Of Energetic Materials

Autor: Suhithi M. Peiris
Publisher: Springer Science & Business Media
ISBN: 3540681515
File Size: 57,77 MB
Format: PDF
Read: 9135
Download or Read Book
Developing and testing novel energetic materials is an expanding branch of the materials sciences. Reaction, detonation or explosion of such materials invariably produce extremely high pressures and temperatures. To study the equations-of-state (EOS) of energetic materials in extreme regimes both shock and static high pressure studies are required. The present volume is an introduction and review of theoretical, experimental and numerical aspects of static compression of such materials. Chapter 1 introduces the basic experimental tool, the diamond anvil pressure cell and the observational techniques used with it such as optical microscopy, infrared spectrometry and x-ray diffraction. Chapter 2 outlines the principles of high-nitrogen energetic materials synthesis. Chapters 3 and 4, examine and compare various EOS formalisms and data fitting for crystalline and non-crystalline materials, respectively. Chapter 5 details the reaction kinetics of detonating energetic materials. Chapter 6 investigates the interplay between static and dynamic (shock) studies. Finally, Chapters 7 and 8 introduce numerical simulations: molecular dynamics of energetic materials under either hydrostatic or uni-axial stress and ab-inito treatments of defects in crystalline materials. This timely volume meets the growing demand for a state-of-the art introduction and review of the most relevant aspects of static compression of energetic materials and will be a valuable reference to researchers and scientists working in academic, industrial and governmental research laboratories.

Shock Wave Reflection Phenomena

Autor: Gabi Ben-Dor
Publisher: Springer Science & Business Media
ISBN: 3540713824
File Size: 18,16 MB
Format: PDF, ePub, Docs
Read: 1705
Download or Read Book
This book is a comprehensive state-of-the-knowledge summation of shock wave reflection phenomena from a phenomenological point of view. It includes a thorough introduction to oblique shock wave reflections, dealing with both regular and Mach types. It also covers in detail the corresponding two- and three-shock theories. The book moves on to describe reflection phenomena in a variety of flow types, as well as providing the resolution of the Neumann paradox.

Fundamentals Of Shock Wave Propagation In Solids

Autor: Lee Davison
Publisher: Springer Science & Business Media
ISBN: 3540745688
File Size: 57,70 MB
Format: PDF, ePub
Read: 8378
Download or Read Book
My intent in writing this book is to present an introduction to the thermo- chanical theory required to conduct research and pursue applications of shock physics in solid materials. Emphasis is on the range of moderate compression that can be produced by high-velocity impact or detonation of chemical exp- sives and in which elastoplastic responses are observed and simple equations of state are applicable. In the interest of simplicity, the presentation is restricted to plane waves producing uniaxial deformation. Although applications often - volve complex multidimensional deformation fields it is necessary to begin with the simpler case. This is also the most important case because it is the usual setting of experimental research. The presentation is also restricted to theories of material response that are simple enough to permit illustrative problems to be solved with minimal recourse to numerical analysis. The discussions are set in the context of established continuum-mechanical principles. I have endeavored to define the quantities encountered with some care and to provide equations in several convenient forms and in a way that lends itself to easy reference. Thermodynamic analysis plays an important role in continuum mechanics, and I have included a presentation of aspects of this subject that are particularly relevant to shock physics. The notation adopted is that conventional in expositions of modern continuum mechanics, insofar as possible, and variables are explained as they are encountered. Those experienced in shock physics may find some of the notation unconventional.

High Pressure Shock Compression Of Solids Vi

Autor: Yasuyuki Horie
Publisher: Springer Science & Business Media
ISBN: 1461300134
File Size: 79,75 MB
Format: PDF, ePub, Docs
Read: 6247
Download or Read Book
Both experimental and theoretical investigations make it clear that mesoscale materials, that is, materials at scales intermediate between atomic and bulk matter, do not always behave in ways predicted by conventional theories of shock compression. At these scales, shock waves interact with local material properties and microstructure to produce a hierarchy of dissipative structures such as inelastic deformation fields, randomly distributed lattice defects, and residual stresses. A macroscopically steady planar shock wave is neither plane nor steady at the mesoscale. The chapters in this book examine the assumptions underlying our understanding of shock phenomena and present new measurements, calculations, and theories that challenge these assumptions. They address such questions as: - What are the experimental data on mesoscale effects of shocks, and what are the implications? - Can one formulate new mesoscale theories of shock dynamics? - How would new mesoscale theories affect our understanding of shock-induced phase transitions or fracture? - What new computational models will be needed for investigating mesoscale shocks?

Fundamental Issues And Applications Of Shock Wave And High Strain Rate Phenomena

Autor: K.P. Staudhammer
Publisher: Elsevier
ISBN: 9780080550770
File Size: 22,21 MB
Format: PDF, ePub, Mobi
Read: 7986
Download or Read Book
This book contains the proceedings of EXPLOMETTM 2000, International Conference on Fundamental Issues and Applications of Shock-Wave and High-Strain-Rate Phenomena, held in Albuquerque, New Mexico, 2000; the fifth in the EXPLOMETTM quinquennial series which began in Albuquerque in 1980. The book is divided into five major sections with a total of 85 chapters. Section I deals with materials issues in shock and high strain rates while Section II covers shock consolidation, reactions, and synthesis. Materials aspects of ballistic and hypervelocity impact are covered in Section III followed by modeling and simulation in Section IV and a range of novel applications of shock and high-strain-rate phenomena in Section V. Like previous conference volumes published in 1980, 1985, and 1995, the current volume includes contributions from fourteen countries outside the United States. As a consequence, it is hoped that this book will serve as a global summary of current issues involving shock and high-strain-rate phenomena as well as a general reference and teaching componant for specializd curricula dealing with these features in a contemporary way. Over the past twenty years, the EXPLOMETTM Conferences have created a family of participants who not only converse every five years but who have developed long-standing interactions and professional relationships which continue to stimulate new concepts and applications particularly rooted in basic materials behavior.

Test Methods For Explosives

Autor: Muhamed Suceska
Publisher: Springer Science & Business Media
ISBN: 1461207975
File Size: 55,31 MB
Format: PDF, ePub, Mobi
Read: 8731
Download or Read Book
It seems that there is no book that treats the measurement of the physical pa rameters of explosives as its only subject, although limited information is avail able in a number of books. Therefore, I have tried to bridge this gap in the lit erature with this book. A large number of various physical parameters have to be determined ex perimentally in order to test or characterise an explosive. Various physical principles have been applied for such measurements. Accordingly, a large number of different experimental methods exist, as well as various testing appa ratuses and procedures. On the other hand, great progress has been made recently in the study of detonation phenomena. New measuring techniques can assess extremely short processes to below nanoseconds scale. They make it possible to determine im portant parameters in detonation physics. I have made a great attempt to cover the available literature data on the subject. Because it would be a highly demanding task to include in a single volume all the methods that are in use by various testing agencies, I have tried to give primarily the principles for determination of individual physical pa rameters of explosives by different measuring methods as well as data treatment procedures.

Explosive Effects And Applications

Autor: Jonas A. Zukas
Publisher: Springer Science & Business Media
ISBN: 1461205891
File Size: 52,31 MB
Format: PDF, Mobi
Read: 2765
Download or Read Book
This is a broad-based text on the fundamentals of explosive behavior and the application of explosives in civil engineering, industrial processes, aerospace applications, and military uses.

Materials Under Extreme Conditions

Autor: A.K. Tyagi
Publisher: Elsevier
ISBN: 0128014423
File Size: 74,87 MB
Format: PDF, ePub, Docs
Read: 5909
Download or Read Book
Materials Under Extreme Conditions: Recent Trends and Future Prospects analyzes the chemical transformation and decomposition of materials exposed to extreme conditions, such as high temperature, high pressure, hostile chemical environments, high radiation fields, high vacuum, high magnetic and electric fields, wear and abrasion related to chemical bonding, special crystallographic features, and microstructures. The materials covered in this work encompass oxides, non-oxides, alloys and intermetallics, glasses, and carbon-based materials. The book is written for researchers in academia and industry, and technologists in chemical engineering, materials chemistry, chemistry, and condensed matter physics. Describes and analyzes the chemical transformation and decomposition of a wide range of materials exposed to extreme conditions Brings together information currently scattered across the Internet or incoherently dispersed amongst journals and proceedings Presents chapters on phenomena, materials synthesis, and processing, characterization and properties, and applications Written by established researchers in the field

Shock Wave Science And Technology Reference Library Vol 3

Autor: Yasuyuki Horie
Publisher: Springer Science & Business Media
ISBN: 3540770801
File Size: 65,76 MB
Format: PDF, Kindle
Read: 6567
Download or Read Book
This book is the second volume of Solids Volumes in theShockWaveScience and Technology Reference Library. These volumes are primarily concerned with high-pressure shock waves in solid media, including detonation and hi- velocity impact and penetration events. This volume contains four articles. The ?rst two describe the reactive behavior of condensed-phase explosives, and the remaining two discuss the inert, mechanical response of solid materials. The articles are each se- contained, and can be read independently of each other. They o?er a timely reference, for beginners as well as professional scientists and engineers, cov- ing the foundations and the latest progress, and include burgeoning devel- ment as well as challenging unsolved problems. The ?rst chapter, by S. She?eld and R. Engelke, discusses the shock initiation and detonation phenomena of solids explosives. The article is an outgrowth of two previous review articles: “Explosives” in vol. 6 of En- clopedia of Applied Physics (VCH, 1993) and “Initiation and Propagation of Detonation in Condensed-Phase High Explosives” in High-Pressure Shock Compression of Solids III (Springer, 1998). This article is not only an - dated review, but also o?ers a concise heuristic introduction to shock waves and condensed-phase detonation. The authors emphasize the point that d- onation is not an uncontrollable, chaotic event, but that it is an orderly event that is governed by and is describable in terms of the conservation of mass, momentum, energy and certain material-speci?c properties of the explosive.